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Abstract

In this work, we describe a new deep learning based

method that can effectively distinguish AI-generated fake

videos (referred to as DeepFake videos hereafter) from real

videos. Our method is based on the observations that cur-

rent DeepFake algorithm can only generate images of lim-

ited resolutions, which need to be further warped to match

the original faces in the source video. Such transforms leave

distinctive artifacts in the resulting DeepFake videos, and

we show that they can be effectively captured by convo-

lutional neural networks (CNNs). Compared to previous

methods which use a large amount of real and DeepFake

generated images to train CNN classifier, our method does

not need DeepFake generated images as negative training

examples since we target the artifacts in affine face warp-

ing as the distinctive feature to distinguish real and fake

images. The advantages of our method are two-fold: (1)

Such artifacts can be simulated directly using simple image

processing operations on a image to make it as negative ex-

ample. Since training a DeepFake model to generate nega-

tive examples is time-consuming and resource-demanding,

our method saves a plenty of time and resources in training

data collection; (2) Since such artifacts are general existed

in DeepFake videos from different sources, our method is

more robust compared to others. Our method is evaluated

on two sets of DeepFake video datasets for its effectiveness

in practice.

1. Introduction

The increasing sophistication of mobile camera technol-

ogy and the ever-growing reach of social media and media

sharing portals have made the creation and propagation of

digital videos more convenient than ever before. Until re-

cently, the number of fake videos and their degrees of re-

alism have been limited by the lack of sophisticated edit-

ing tools, the high demand on domain expertise, and the

complex and time-consuming process involved. However,

the time of fabrication and manipulation of videos has de-

creased significantly in recent years, thanks to the acces-

sibility to large-volume training data and high-throughput

computing power, but more to the growth of machine learn-

ing and computer vision techniques that eliminate the need

for manual editing steps.

In particular, a new vein of AI-based fake video gen-

eration methods known as DeepFake has attracted a lot

of attention recently. It takes as input a video of a spe-

cific individual (’target’), and outputs another video with

the target’s faces replaced with those of another individ-

ual (’source’). The backbone of DeepFake are deep neu-

ral networks trained on face images to automatically map

the facial expressions of the source to the target. With

proper post-processing, the resulting videos can achieve a

high level of realism.

In this paper, we describe a new deep learning based

method that can effectively distinguish DeepFake videos

from the real ones. Our method is based on a property of

the DeepFake videos: due to limitation of computation re-

sources and production time, the DeepFake algorithm can

only synthesize face images of a fixed size, and they must

undergo an affine warping to match the configuration of the

source’s face. This warping leaves distinct artifacts due to

the resolution inconsistency between warped face area and

surrounding context. As such, this artifacts can be used to

detect DeepFake Videos.

Our method detects such artifacts by comparing the gen-

erated face areas and their surrounding regions with a ded-

icated Convolutional Neural Network (CNN) model. To

train the CNN model, we simplify the process by simu-

lating the resolution inconsistency in affine face warpings

directly. Specifically, we first detect faces and then extract

landmarks to compute the transform matrices to align the

faces to a standard configuration. We apply Gaussian blur-

ring to the aligned face, which is then affine warped back to

original image using the inverse of the estimated transfor-

mation matrix. In order to simulate more different resolu-

tion cases of affine warped face, we align faces into multiple

scales to increase the data diversity (see Figure 2). Com-

pared to training a DeepFake model to generate fake im-

ages as negative data in [1, 10], which is time-consuming

and resource-demanding (∼ 72 hours on a NVIDIA GTX
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GPU), our method creates negative data only using simple

image processing operations which therefore saves a plenty

of time and computing resources. Moreover, other meth-

ods may be over-fit to a specific distribution of DeepFake

videos, our method is more robust since such artifacts are

general in different sources of DeepFake videos. Based

on our collected real face images from Internet and corre-

sponding created negative data, we train four CNN mod-

els: VGG16 [31], ResNet50, ResNet101 and ResNet152

[11]. We demonstrate the effectiveness of our method on

a DeepFake dataset from [20] and test several fake videos

on YouTube.

2. Related works

AI-based Video Synthesis Algorithms The new genera-

tion of AI-based video synthesis algorithms are based on

the recent developments in new deep learning models, es-

pecially the generative adversarial networks (GANs) [9]. A

GAN model consists of two deep neural networks trained in

tandem. The generator network aims to produce images that

cannot be distinguished from the training real images, while

the discriminator network aims to tell them apart. When

training completes, the generator is used to synthesize im-

ages with realistic appearance.

The GAN model inspired many subsequent works for

image synthesis, such as [8, 28, 2, 13, 32, 30, 21, 36, 3, 5].

Liu et al. [21] proposed an unsupervised image to image

translation framework based on coupled GANs, which aims

to learn the joint representation of images in different do-

mains. This algorithm is the basis for the DeepFake algo-

rithm.

The creation of a DeepFake video starts with an input

video of a specific individual (’target’), and generates an-

other video with the target’s faces replaced with that of an-

other individual (’source’), based on a GAN model trained

to translate between the faces of the target and the source,

see Figure 1. More recently, Zhu et al. [36] proposed cycle-

consistent loss to push the performance of GAN, namely

Cycle-GAN. Bansal et al. [3] stepped further and pro-

posed Recycle-GAN, which incorporated temporal infor-

mation and spatial cues with conditional generative adver-

sarial networks. StarGAN [5] learned the mapping across

multiple domains only using a single generator and discrim-

inator.

Resampling Detection. The artifacts introduced by the

DeepFake production pipeline is in essence due to affine

transforms to the synthesized face. In the literature of dig-

ital media forensics, detecting transforms or the underly-

ing resampling algorithm has been extensively studied, e.g.,

[25, 26, 22, 15, 16, 17, 7, 24, 27, 12, 4]. However, the

performance of these methods are affected by the post-

processing steps, such as image/video compression, which

are not subject to simple modeling. Besides, these methods

usually aim to estimate the exact resampling operation from

whole images, but for our purpose, a simpler solution can

be obtained by just comparing regions of potentially synthe-

sized faces and the rest of the image – the latter are expected

to be free of such artifacts while the existence of such arti-

facts in the former is a telltale cue for the video being a

DeepFake.

GAN Generated Image/Video Detection. Traditional

forgery can be detected using methods such as [35, 6]. Zhou

et al. [35] proposed two-stream CNN for face tampering de-

tection. NoisePrint [6] employed CNN model to trace de-

vice fingerprints for forgery detection. Recently, detecting

GAN generated images or videos has also made progress.

Li et al. [20] observed that DeepFake faces lack realistic

eye blinking, as training images obtained over the Inter-

net usually do not include photographs with the subject’s

eyes closed. The lack of eye blinking is detected with a

CNN/RNN model to expose DeepFake videos. However,

this detection can be circumvented by purposely incorpo-

rating images with closed eyes in training. Yang et al. [34]

utilized the inconsistency in head pose to detect fake videos.

The work [19] exploited the color disparity between GAN

generated images and real images in non-RGB color spaces

to classify them. The work [23] also analyzed the color dif-

ference between GAN images and real images. However,

it is not clear if this method is extensible to inspecting lo-

cal regions as in the case of DeepFake. Afchar et al. [1]

trained a convolutional neural networks namely MesoNet

to directly classify real faces and fake faces generated by

DeepFake and Face2face [33]. The work [10] extended [1]

to temporal domain by incorporating RNN on CNN. While

it shows promising performance, this holistic approach has

its drawback. In particular, it requires both real and fake

images as training data, and generating the fake images us-

ing the AI-based synthesis algorithms is less efficient than

the simple mechanism for training data generation in our

method.

3. Methods

We detect synthesized videos by exploiting the face

warping artifacts resulted from the DeepFake production

pipeline. For efficient running time, the current DeepFake

algorithms create synthesized face images of fixed sizes.

These faces are then undergone an affine transform (i.e.,

scaling, rotation and shearing) to match the poses of the

target faces that they will replace (see Figure 1 (g) – (h)).

As such, the facial region and surrounding regions in the

original image/video frame will present artifacts, the reso-

lution inconsistency due to such transforms after the subse-

quent compression step to generate the final image or video

frames. Therefore, we propose to use a Convolutional Neu-

ral Network (CNN) model to detect the presence of such
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Figure 1. Overview of the DeepFake production pipeline. (a) An image of the source. (b) Green box is the detected face area. (c) Red

points are face landmarks. (d) Transform matrix is computed to warp face area in (e) to the normalized region (f). (g) Synthesized face

image from the neural network. (h) Synthesized face warped back using the same transform matrix. (i) Post-processing including boundary

smoothing applied to the composite image. (g) The final synthesized image.
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Figure 2. Overview of negative data generation. (a) is the original

image. (b) are aligned faces with different scales. We randomly

pick a scale of face in (b) and apply Gaussian blur as (c), which is

then affine warped back to (d).

artifacts from the detected face regions and its surrounding

areas.

The training of the CNN model is based on face im-

ages collected from the Internet. Specifically, we collect

24, 442 JPEG face images as positive examples. The nega-

tive examples can be generated by applying DeepFake algo-

rithms as in [1], but it requires us to train and run the Deep-

Fake algorithms, which is time-consuming and resource-

demanding. On the other hand, as the purpose here is to de-

tect the artifacts introduced by the affine face warping steps

in DeepFake production pipeline, we simplify the negative

example generation procedure by simulating the affine face

warping step (Figure 1) directly.

Specifically, as shown in Figure 2, we take the following

steps to generate negative examples to train the CNN model.

1. We detect faces in the original images and extract the

face region using software package dlib [14];

2. We align faces into multiple scales and randomly pick

one scale, which is then smoothed by a Gaussian blur

with kernel size (5 × 5). This process aims to cre-

ate more resolution cases in affine warped faces, which

can better simulate different kinds of resolution incon-

(a)

(b) (c) (d)

Figure 3. Illustration of face shape augmentation of negative ex-

amples. (a) is the aligned and blurred face, which then undergoes

an affine warped back to (b). (c, d) are post-processing for re-

fining the shape of face area. (c) denotes the whole warped face

is retained and (d) denotes only face area inside the polygon is

retained.

sistency introduced in affine face warping.

3. The smoothed face undergoes an affine warp back to

the same sizes of original faces to simulate the artifacts

in the DeeFake production pipeline.

To further enlarge the training diversity, we change

the color information: brightness, contrast, distortion and

sharpness for all training examples. In particular, we change

the shape of affine warped face area to simulate different

post-processing procedure in DeepFake pipeline. As shown

in Figure 3, the shape of affine warped face area can be

further processed based on face landmarks. Figure 3(d) de-

notes a convex polygon shape is created based on the face

landmarks of eye browns and the bottom of mouth.

From positive and negative examples, we crop regions

of interest (RoI) as the input of our networks. As our aim

is to expose the artifacts between fake face area and sur-

rounding area, the RoIs are chosen as the rectangle areas

that contains both the face and surrounding areas. Specif-

ically, we determine the RoIs using face landmarks, as

[y0− ŷ0, x0− x̂0, y1+ ŷ1, x1+ x̂1], where y0, x0, y1, x1 de-

notes the minimum bounding box b which can cover all face
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Figure 4. Performance of each CNN model on all frames of

UADFV [34].

Figure 5. Performance of each CNN model on each video of

UADFV [34].

landmarks excluding the outline of the cheek. The variables

ŷ0, x̂0, ŷ1, x̂1 are random value between [0, h

5
] and [0, w

8
],

where h,w are height and width of b respectively. The RoIs

are resized to 224 × 224 to feed to the CNN models for

training.

We train four CNN models — VGG16 [31], ResNet50,

ResNet101 and ResNet152 [11] using our training data. For

inference, we crop the RoI of each training example by 10
times. Then we average predictions of all RoIs as the final

fake probability.

4. Experiments

We prepare our training data using the following strat-

egy: instead of generating all negative examples in advance

before training process, we employ a dynamic way to gen-

erate negative examples along with training process. For

each training batch, we randomly select half positive ex-

amples and convert them into negative examples following

the pipeline in Figure 2, which therefore makes the training

data more diversified. We set batch size as 64, learning rate

starting from 0.001 and decay 0.95 after each 1000 steps.

We use SGD optimization method and the training process

will be terminated until it reaches the maximum epoch. For

VGG16, we directly train it using our data and terminate it

at epoch 100. For ResNet50, ResNet101 and ResNet 152

models, we first load the ImageNet pretrained models and

fine tune them using our data. The training process will be

terminated at epoch 20. Then the models are fine-tuned us-

ing hard mining strategy. In our training, hard examples in-

clude positive examples with the predicted fake probability

greater than 0.5, and negative examples with the predicted

fake probability less than 0.5. We employ the same train-

ing procedure with learning rate from 0.0001. This stage is

terminated after 20 epochs.

4.1. Evaluations on UADFV

We validate our method on DeepFake video dataset

UADFV from [34]. This dataset contains 98 videos (32752
frames in total), which having 49 real videos and 49 fake

videos respectively. Each video has one subject and lasts

approximate 11 seconds. We evaluate the four models on

this dataset using Area Under Curve (AUC) metric on two

settings: image based evaluation and video based evalua-

tion.

For image based evaluation, we process and send frames

of all videos into our four networks respectively. Fig-

ure 4 illustrates the performance of each network on all

frames. As these results show, the VGG16, ResNet50,

ResNet101 and ResNet152 models achieve AUC perfor-

mance 83.3%, 97.4%, 95.4%, 93.8%, respectively. ResNet

networks have about 10% better performance compared

to VGG16, due to the residual connections, which make

the learning process more effective. Yet, ResNet50 has

the best performance among the other ResNet networks,

which shows that as the depth of network increases, the

classification-relevant information diminishes. For video

based evaluation, we take each video as the unit of anal-

ysis. Due to the illumination changes, head motions and

face occlusions in video, it is challenging to correctly pre-

dict the label of every frame. As such, we empirically

assume a video is DeepFake-generated if a certain num-

ber of frames in this video are detected as fake. Thus we

feed all frames of the video to the CNN based model and

then return average the top third of the output score as the

overall output of the video. Figure 5 shows the video-

level performance of each type of CNN model. VGG16,

ResNet50, ResNet101 and ResNet152 can achieve AUC

performance 84.5%, 98.7%, 99.1%, 97.8% respectively. In

this video based evaluation metric, ResNet network still per-

forms ∼ 15% better than VGG16. Yet, each ResNet model

has similar performance, as in the case of image-level clas-

sification.

4.2. Evaluations on DeepfakeTIMIT

In addition, we also validate our method on another

DeepFake video dataset DeepfakeTIMIT [18]. This

dataset contains two set of fake videos which are made

using a lower quality (LQ) with 64 x 64 input/output
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Figure 6. Performance of each CNN model on all frames in LQ set

of DeepFakeTIMIT [18].

Figure 7. Performance of each CNN model on all frames in HQ set

of DeepFakeTIMIT [18].

size model and higher quality (HQ) with 128 x 128

size model, respectively. Each fake video set has 32
subjects, where each subject has 10 videos with faces

swapped. Each video is 512 × 384 and lasts ∼ 4 sec-

onds. The original videos of corresponding 32 subjects

are from VidTIMIT dataset [29]. We select subset of

each subject from original dataset VidTIMIT and all

fake videos from DeepfakeTIMIT for validation (10537
original images and 34023 fake images for each quality

set). We evaluate our four models on each frame of all

videos based on AUC metric, where the performance of

VGG16, ResNet50, ResNet101 and ResNet152 models on

LQ and HQ video sets are 84.6%, 99.9%, 97.6%, 99.4%
and 57.4%, 93.2%, 86.9%, 91.2% respectively, see Figure 6

and Figure 7.

We have also tested our algorithm on several DeepFake

videos that were generated and uploaded to YouTube by

anonymous users. In Figure 8, we show the detection re-

sults as the output score from the ResNet50 based CNN

model for one particular example1, where an output of 0
corresponds to a frame free of the warping artifacts. As

these results show, the CNN model is effective in detecting

the existence of such artifacts, which can be used to deter-

mine if these videos are synthesized using the DeepFake

algorithm.

1https://www.youtube.com/watch?v=BU9YAHigNx8

Figure 8. Example of our method on a DeepFake generated video

clip from YouTube (left) and original video clip (right).

Table 1. AUC performance of our method and other state-of-the-

art methods on UADFV and DeepfakeTIMIT datasets.

Methods UADFV
DeepfakeTIMIT

LQ HQ

Two-stream NN [35] 85.1 83.5 73.5

Meso-4 [1] 84.3 87.8 68.4

MesoInception-4 82.1 80.4 62.7

HeadPose [34] 89.0 - -

Ours-VGG16 84.5 84.6 57.4

Ours-ResNet50 97.4 99.9 93.2

Ours-ResNet101 95.4 97.6 86.9

Ours-ResNet152 93.8 99.4 91.2

4.3. Comparing with State-of-the-arts

We compare the AUC performance of our method with

other state-of-the-art methods: the face tampering de-

tection method Two-stream NN [35], and two DeepFake

detection methods MesoNet [1] and HeadPose [34] on

the UADFV dataset and DeepfakeTIMIT dataset. For

MesoNet, we test the proposed two architectures: Meso-4

and MesoInception-4. Table 1 shows the performance of all

the methods. As the results show, our ResNet models out-

perform all other methods. Specifically, ResNet50 achieves

best performance, which outperforms Two-stream NN by ∼

16% on both datasets that thereby demonstrates the efficacy

of our method on DeepFake video detection. Our method

also outperforms Meso-4 and MesoInception-4 by ∼ 17%
and ∼ 21% on both datasets. Specifically, our method has

a notable advance in HQ set of DeepfakeTIMIT. Since

MesoNet is trained using self-collected DeepFake generated

videos, it may over-fit to a specific distribution of DeepFake

videos in training. In contrast, our method focuses on more

intuitive aspect in DeepFake video generation: resolution

inconsistency in face warping, which is thereby more robust

to DeepFake videos of different sources. HeadPose utilizes

head pose inconsistency to distinguish real and fake videos.
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However, such physiological signal may not be notable in

frontal faces, such that our method outperforms it by ∼ 8%
on UADFV.

5. Conclusion

In this work, we describe a new deep learning based

method that can effectively distinguish AI-generated fake

videos (DeepFake Videos) from real videos. Our method is

based on the observations that current DeepFake algorithm

can only generate images of limited resolutions, which are

then needed to be further transformed to match the faces to

be replaced in the source video. Such transforms leave cer-

tain distinctive artifacts in the resulting DeepFake Videos,

which can be effectively captured by a dedicated deep neu-

ral network model. We evaluate our method on several dif-

ferent sets of available DeepFake Videos which demonstrate

its effectiveness in practice.

As the technology behind DeepFake keeps evolving, we

will continuing improve the detection method. First, we

would like to evaluate and improve the robustness of our de-

tection method with regards to multiple video compression.

Second, we currently using predesigned network structure

for this task (e.g., resnet or VGG), but for more efficient de-

tection, we would like to explore dedicated network struc-

ture for the detection of DeepFake videos.
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